
CSCI 1951-W Sublinear Algorithms for Big Data Fall 2020

Lecture 2: Concentration Inequalities

Lecturer: Jasper Lee Scribe: Ang Li

1 Concentration Behavior of Independent Random Processes

Intuition 2.1 Aggregate behavior of lots of random process is typically “well-behaved” (at
least to some extent).

Consider n i.i.d. random variables X1, ..., Xn from a distribution D on R with n >> 1.
Assume the distribution has finite mean µ and finite variance σ2. The following are true
about the mean X̄n = 1

n

!
iXi:

• The Law of Large Numbers: X̄n → µ almost surely as n → ∞.

• The Central Limit Theorem: X̄n → N(µ,σ2/n) in distribution.

To concretely and operationally capture the law of large numbers, what we really want
is a concentration inequality :

P(X̄n ≥ ε) ≤ small(ε, n)

for some function “small”.
A weak concentration inequality is Chebyshev’s inequality.

Proposition 2.2 (Chebyshev’s Inequality) For a real valued random variable Y ∈ R with
finite mean and variance, we have

Pr(|Y − EY | ≥ a) ≤ σ2(Y)

a2
.

Proof. This can be proved by applying the Markov’s inequality to the positive random
variable (Y − EY)2.

Corollary 2.3 Applying the Chebyshev’s inequality to the sample mean X̄n = 1
n

!
iXi, we

have

P(|X̄n − EX| ≥ ε) ≤ σ2

nε2
, (1)

where σ2 is the variance of the i.i.d random variables Xi.

We can compare the bound derived from Chebyshev’s inequality with the bound sug-
gested by the CLT. Consider the Normal pdf:

φ(x;µ,σ2) =
1√
2πσ

exp

"
−(x− µ)2

2σ2

#
.

We can approximate the tail probability by

P(|X̄n − EX| ≥ ε) ≈ 2

$ ∞

ε
φ(x; 0,σ2/n) ≈ C exp

"
−nε2

2σ2

#
.

1

Compared with (1), we can see that the bound derived from Normal approximation de-
cays like O(e−n), which is much faster than the O(n−1) bound derived from Chebyshev’s
inequality.

To strengthen the inequality, one approach is to generalize Chebyshev’s inequality by
applying the Markov’s inequality to the k-th moment E(|Y − EY |k):

Proposition 2.4 For a real-valued random variable Y ∈ R and k ∈ N, we have

P(|Y − EY | ≥ a) = P(|Y − EY |k ≥ ak) ≤ E(|Y − EY |k)
ak

.

Since the above inequality is true for all k ∈ N, we can combine them to get a stronger
bound:

Corollary 2.5 With the same setup as the above proposition, we have

P(|Y − EY | ≥ a) ≤ inf
k∈N

E(|Y − EY |k)
ak

.

This particular corollary can be hard to apply though, because it is generally not clear
how to bound the kth moments in nice ways such that we can minimize the right hand side
with respect to k both cleanly and tightly.

2 Chernoff Bounds

With the comparison between the bounds from Normal approximation and Chebyshev’s
inequality, it seems like we can improve the bounds on X̄n by quite a bit if we believe in the
Central Limit Theorem. We start by define the moment generating function of a random
variable X

Definition 2.6 The moment generating function MX(t) of a random variable X ∈ R is
defined as

MX(t) = E(etX).

Remark 2.7 Using the standard Taylor expansion, we have

MX(t) = E(
∞%

k=0

(tX)k

k!
) =

∞%

k=0

tk

k!
E(Xk).

Therefore, the moment generating function combines information from all moments of X.
Thus, if instead of using the kth moment to derive concentration, we used the moment
generating function instead, this is another way to deriving concentration using all the
available moment information about the underlying distribution.

2.1 Generic Chernoff bound

We introduce the generic Chernoff bound which we will use later for more specific cases:

Lemma 2.8 For a real-valued random variable Y ∈ R with finite moment generating func-
tion (handwaving the formalization issues here a little), we have

P(Y ≥ b) ≤ inf
t>0

e−tbE(etY) = inf
t>0

e−tbMY (t)

P(Y ≤ b) ≤ inf
t<0

e−tbE(etY) = inf
t<0

e−tbMY (t) = inf
t>0

etbMY (−t).

2

Proof. Notice that the random variable etY is nonnegative and therefore we can apply the
Markov’s inequality etY for any t > 0:

P(Y ≥ b) = P(etY ≥ etb) ≤ E(etY)
etb

.

Since this is true for all t > 0, the inequality also holds for the inf over all possible values
of t, which proves the first inequality. For the second one, we can use the fact that

P(Y ≤ b) = P(etY ≥ etb), t < 0

and follow a similar argument.

2.2 Chernoff bound for Poisson trials

To apply the generic Chernoff bound to a random variable Y , we typically need the following
two steps:

1. Compute or derive an upper bound of the moment generating function MY (t)

2. Compute the inf over proper ranges of t. In cases when the inf is hard to compute,
we can also aim for a particular value of t that’s good enough for the bound we need.

Next we derive a bound for a sum of Poisson trials:

Theorem 2.9 Give n independent Bernoulli random variables Xi ← Bernoulli(pi), we
define

X =

n%

i=1

Xi, µ = E(X) =

n%

i=1

pi.

Given κ > 0, we have the following tail bound:

P(X ≥ (1 + κ)µ) ≤
"

eκ

(1 + κ)(1+κ)

#µ

(2)

Furthermore, if κ ∈ (0, 1], we have

P(X ≥ (1 + κ)µ) ≤ exp

"
−µκ2

3

#
(3)

Proof. We follow the two-step process to prove the desired bound. We start by deriving an
upper bound of the moment generating function MX(t):

MX(t) = E[etX] = E[et
!

i Xi] =
&

i

E[etXi].

For each Xi, we have

E[etXi] = pi · et + (1− pi) · 1 = 1 + pi(e
t − 1) ≤ epi(e

t−1).

Therefore
MX(t) ≤

&

i

epi(e
t−1) = e(

!
i pi(e

t−1)) = eµ(e
t−1).

3

Using the generic Chernoff bound, we know

P(X ≥ (1 + κ)µ) ≤ inf
t>0

e−t(1+κ)µeµ(e
t−1) = inf

t>0
eµ(e

t−1−(1+κ)t).

Consider the inf of the function f(t) = et − 1− (1+ κ)t, it’s a straightforward computation
to show that inf is achieved at

t∗ = log(1 + κ).

Substitute t∗ into the upper bound, we obtain the first inequality. To prove the second
inequality, we just need to verify

eκ

(1 + κ)1+κ
≤ e−κ2/3,

holds for all κ ∈ (0, 1], which can be done numerically.

Using the generic Chernoff bound for lower tail case, we can obtain very similar result
with slightly different bounds:

Theorem 2.10 For κ ∈ (0, 1) and with the same setup as the previous theorem, we have

P(X ≤ (1− κ)µ) ≤
"

e−κ

(1− κ)(1−κ)

#µ

(4)

P(X ≤ (1− κ)µ) ≤ exp−µκ2/2 . (5)

Note the constant of 2 instead of 3 in the denominator of the exponent, in the second
inequality.

Combine the bounds for the both lower and upper tails, we have a two-sided tail bound
for Poisson trials:

Corollary 2.11 For κ ∈ (0, 1) and with the same setup as the previous theorem, we have

P(|X − µ| ≥ κµ) ≤ 2 exp

"
−µκ2

3

#

Sometimes, we don’t know the exact probabilities pi and as a result the expectation µ
is not known either. However, we can extend the Chernoff bounds to cases when we can
derive a lower or upper bound of the expectation µ:

Corollary 2.12 Suppose µ ≤ µu ≤ n for some known µu, we have

P(X ≥ (1 + κ)µu) ≤ exp

"
−µuκ

2

3

#

This result generalizes to the other 3 inequalities in the above two theorems on Chernoff
bounds for Poisson trials.

Proof. GivenXi ∼ Bernoulli(pi), we can construct a new set of Poisson trials Yi ∼ Bernoulli(qi)
such that

qi ≥ pi,
%

i

qi = µu.

Let Y =
!

i Yi. Since it’s more likely to get 1 for each Yi compared to Xi, we have

P(X ≥ (1 + κ)µu) ≤ Pr(Y ≥ (1 + κ)µu).

Notice that EY = µu and apply the Chernoff bound to Y will give the desired inequality.

4

Remark 2.13 By using an upper bound instead of exact value, we have increased the tail
from (1+κ)µ to (1+κ)µu but the resulting upper bound on the probability is also improved:

exp

"
−µuκ

2

3

#
≤ exp

"
−µκ2

3

#

On the other hand, this observation does not hold for the lower tail, in that the probability
increases (and the inequality loosens) if we only have a lower bound of µ.

2.3 Applications

One way to increase the performance of an existing algorithm is to run multiple times
and try combine the results in some way. In particular, we are concerned with increasing
the success probability of an algorithm. We can apply the Chernoff bounds to bound the
number of repetitions.

Example 2.14 Consider a decision algorithm A that makes the correct decision with prob-
ability ≥ 2/3. To get an algorithm A′ that makes the decision with probability ≥ 1− δ, we
can repeat A for n times and return the majority decision. To decide a lower bound for n,
we let Ei be the indicator variable of the event that ”i-th run of A gets the wrong answer”.
We know

Ei ← Bernoulli(pi), pi ≤ 1/3.

The algorithm A′ ends up with the wrong decision if and only if the majority of the runs
gives the wrong answer. Therefore

P(A′ fails) = P

'
n%

i=1

Ei ≥ n/2

(
= P

'
%

i

Ei ≥
"
1 +

1

2

#
n

3

(
.

Since n/3 is an upper bound for E[
!

iEi], we can use Corollary 2.12 and conclude

P(A′ fails) ≤ exp

'
−n

3

"
1

2

#2 1

3

(
= exp(−Θ(n))

We need exp(−Θ(n)) ≤ δ, which is true for n = Θ(log 1
δ).

Example 2.15 Consider an estimation algorithm B which outputs an estimate b̂ of the
unknown parameter b. Suppose B outputs b̂ ∈ [b − εl, b + εu] with probability ≥ 2/3. We
want to construct an algorithm B′ that returns an estimate b′ ∈ [b−εl, b+εu] with probability
≥ 1− δ.

We can run the algorithm B for n times and obtain n estimates b̂i and try combine them
into a single estimate b′. One obvious option is to take the mean, but this may not be the
best idea because we don’t know the behavior of B outside the unknown interval [b−εl, b+εu].
For instance, it’s possible that B outputs ±∞ with a nontrivial probability which is ≤ 1/3
and in that case, the mean will very likely be ±∞.
A better choice is to take the median of the n estimates:

b′ = median{b̂1, ..., b̂n},

5

which is more robust to outliers. To bound the number of iterations n, let El
i be the indicator

random variable that b̂i < b− εl. We know El
i ← Bernoulli(pi) with pi ≤ 1/3. We have

P(b′ < b− εl) = P

'
n%

i=1

El
i ≥

n

2

(

Using the same argument as in the previous example, we can see that n = Θ(log 1
δ) is enough

to achieve
P(b′ < b− εl) < δ/2.

Using a similar argument for the upper bound P(b′ > b + εu), we can show it’s enough to
have n = Θ(log 1

δ) overall.

Example 3 A similar construction can also work for optimization algorithms. Suppose
we have an approximation algorithm C that returns a valid answer that is at least C − ε
with probability ≥ 2/3, but never more than the optimum C of the optimization problem
at hand. By repeating C for n = Θ(log 1

δ) times and returning the maximum answer, we
can construct an algorithm C′ that outputs answer ≥ C − ε with probability ≥ 1− δ.

Remark 2.16 One general heuristic is that we should always design algorithms that has
query/time complexity q(δ) such that

q(δ) = O

"
q(1/3) log

1

δ

#

where δ in q(δ) is the success probability. If our algorithm has worse than log dependence
on δ, then we can typically use one of the above tricks to boost the constant probability
version of our algorithm into a high probability one with only a log dependence.

6

